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Abstract—Every probability on many-valued events (a state on
a finitely-generated free MV-algebras) is uniquely represented by
refining finitely-supported probabilities across all Schauder bases.
This procedure enables reconstructing the state space as the
inverse limit of an inverse system of finite-dimensional simplices.

I. INTRODUCTION

States were introduced by Mundici [1] in order to model
the notion of “average truth-value” of formulas in Łukasiewicz
logic. Probability on MV-algebras that are algebraic counter-
parts of Łukasiewicz logic was further developed by Riečan
and Mundici in [2], building on the previous work of the
Slovak School—see [3] and the references there. It was proved
in [4] and independently in [5] that the mathematical properties
of states indeed fit the idea of averaging truth-values: namely,
every state is the Lebesgue integral of (an equivalence class
of) a formula with respect to a uniquely determined Borel
probability measure on possible worlds. Panti’s proof is even
more general in relaxing the semisimplicity of an MV-algebra.

In this paper we pave the way to another proof of the integral
representation theorem in a particular case of a free finitely-
generated MV-algebra (Theorem 2). States and measures on
such MV-algebras are of special importance. In particular, de
Finetti coherence characterization of states on many-valued
events (represented by formulas in infinite-valued Łukasiewicz
propositional logic) is proved in [6]. Measures on free MV-
algebras play a crucial role in developing coalition game
theory with coalitions modeled by formulas [7]. The approach
pursued in this article relies on theory of Schauder hats and
bases [8, Section 9.1], which generalize partitions in Boolean
algebras. The key fact is that any two Schauder bases admit
a joint refinement. Refinement of bases is then used in the
“compactness” argument that renders the representing Borel
probability measure as the unique measure resulting from the
refinement of representing finitely-supported measures across
all the Schauder bases. The integral representation of states
implies that the state space of a free MV-algebra is a so-
called Bauer simplex (Corollary 1), which holds true even for
all semisimple MV-algebras (see [4, Theorem 22], [1]). The

state space of a free MV-algebra can be viewed as the inverse
limit of finite-dimensional simplices (Proposition 4), which are
constructed as “state spaces” restricted to Schauder bases. It
is worth mentioning that this result follows from a much more
general theorem [9, Theorem 12.45(b)], but the proof of the
special case presented here is very simple and geometrically
appealing. An inessential modification of the proofs in this
article makes possible to extend all the results to any finitely-
presented MV-algebra.

The article is structured as follows. Section II contains nec-
essary definitions and results concerning Łukasiewicz infinite-
valued propositional logic and its associated Lindenbaum
algebra Lk of (equivalence classes of) formulas over k propo-
sitional variables. Section III contains the above mentioned
results.

II. BASIC NOTIONS

The aim of this section is to provide a survey of Łukasiewicz
infinite-valued propositional logic [8, Chapter 4] and its as-
sociated Lindenbaum algebra. Formulas φ,ψ, . . . are con-
structed from propositional variables A1, . . . , Ak by applying
the standard rules known in Boolean logic. The connectives
are negation, disjunction and conjunction, which are denoted
by ¬, ⊕ and ⊙, respectively. This is already a complete set of
connectives so that, for instance, the implication φ → ψ can
be defined as ¬φ⊕ψ. The set of all formulas in propositional
variables A1, . . . , Ak is denoted by Form(A1, . . . , Ak).

Semantics for connectives of Łukasiewicz logic is defined
by operations in algebras called MV-algebras [8]. The algebra
of truth degrees of Łukasiewicz logic is the standard MV-
algebra, which is the unit interval [0, 1] endowed with the
operations ¬,⊕,⊙ defined as follows:

¬a =1− a
a⊕ b =min {a+ b, 1}
a⊙ b =max {a+ b− 1, 0}

A valuation is a mapping V : Form(A1, . . . Ak)→ [0, 1] such
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that
V (¬φ) = 1− V (φ)

V (φ⊕ ψ) = V (φ)⊕ V (ψ)
V (φ⊙ ψ) = V (φ)⊙ V (ψ)

Formulas φ,ψ ∈ Form(A1, . . . , Ak) are called equivalent
when V (φ) = V (ψ), for every valuation V . The equivalence
class of φ is denoted [φ]. The set of all such equivalence
classes is an MV-algebra Lk with the operations

¬[φ] = [¬φ]
[φ]⊕ [ψ] = [φ⊕ ψ]
[φ]⊙ [ψ] = [φ⊙ ψ]

for every φ,ψ ∈ Form(A1, . . . , Ak).
Since every valuation V is uniquely determined by its

restriction to the propositional variables

V 7→ V (A1, . . . , Ak) ∈ [0, 1]k,

every “possible world” V is matched with a unique point xV

from the k-dimensional unit cube [0, 1]k and vice versa. Let
Vx be the valuation corresponding to x ∈ [0, 1]k. Put [φ](x) =
Vx(φ), for every x ∈ [0, 1]k. Hence the equivalence class [φ]
of every φ ∈ Form(A1, . . . Ak) can be viewed as a function
[0, 1]k → [0, 1] and Lk is the algebra of all such functions
endowed with the pointwise operations ¬,⊕,⊙.

McNaughton theorem ([10]). (Lk,⊕,⊙,¬) is precisely the
MV-algebra of all functions [0, 1]k → [0, 1] that are continu-
ous and piecewise linear, where each linear piece has integer
coefficients.

Let f ∨ g = ¬(¬f ⊕ g) ⊕ g, f ∧ g = ¬(¬f ∨ ¬g). These
operations are in fact the pointwise supremum and infimum
of functions in Lk, respectively, and they make Lk into
a distributive lattice.

Theory of Schauder hats and bases in Lk, which was
developed for the purely geometrical proof of McNaughton
theorem [8, Section 9.1], is briefly repeated in this paragraph.
The basic familiarity with polyhedral geometry and topology
is assumed, see [11], [12], for instance. A polyhedral complex
(in [0, 1]k) is a finite set of polyhedra R such that: (i) each
polyhedron of R is included in [0, 1]k and all its vertices have
rational coordinates; (ii) if P ∈ R and Q is a face of P , then
Q ∈ R; (iii) if P,Q ∈ R, then P ∩ Q is a face of both
P and Q. The set

∪
P∈R P is called a support of R. When

all the polyhedra of a polyhedral complex are simplices, then
the polyhedral complex is said to be a simplicial complex.
Alternatively, a simplicial complex with the support S is called
a triangulation of S. The denominator den(q) of a point
q ∈ [0, 1]k with rational coordinates ( r1

s1
, . . . , rk

sk
), where

ri ≥ 0, si > 0 are the uniquely determined relatively prime
integers, is the least common multiple of s1, . . . , sk. Passing
to homogeneous coordinates in Rk, put

q̃ =
(den(q)

s1
r1, . . . ,

den(q)
sk

rk,den(q)
)

and note that q̃ ∈ Zk+1. A k-simplex with vertices v0, . . . , vk

is unimodular if {ṽ0, . . . , ṽk} is a basis of the free Abelian

group Zk+1. An n-simplex with n < k is unimodular
when it is a face of some unimodular k-simplex. We say
that a triangulation Σ is unimodular if each simplex of Σ
is unimodular. If R is a polyhedral complex, VR denotes
the set of all the vertices of R. Let Σ be a unimodular
triangulation with the support S ⊆ [0, 1]k. For each x ∈ VΣ,
the Schauder hat (at x over Σ) is the uniquely determined
continuous piecewise linear function hx : S → [0, 1] which
attains the value 1

den(x) at x, vanishes at each vertex from
VΣ \{x}, and is a linear function on each simplex of Σ. The
basis HΣ (over Σ) is the set {hx | x ∈ VΣ}. For each
x ∈ VΣ, the normalized Schauder hat (at x over Σ) is the
function ĥx = den(x)hx. Every (normalized) Schauder hat
belongs to Lk. The normalized basis ĤΣ (over Σ) is the set
{ĥx | x ∈ VΣ}. The following properties of normalized bases
follow immediately.

Proposition 1. If ĤΣ is a normalized basis, then ĥx⊙ĥx′ = 0,
for each x, x′ ∈ VΣ with x ̸= x′, and

∑
x∈VΣ

ĥx = 1.

In the sequel T denotes the collection of all unimodular
triangulations of [0, 1]k. Let H = {HΣ | Σ ∈ T}. For any pair
HΣ1 ,HΣ2 ∈ H, we will say that HΣ2 refines HΣ1 and write
HΣ1 ≼ HΣ2 , if for each h ∈ HΣ1 , there exist nonnegative
integers βx, x ∈ VΣ2 , such that h =

∑
x∈VΣ2

βxhx.

Theorem 1 ([13], [14]). The set H is an up-directed partially
ordered by ≼.

III. MAIN RESULTS

States on MV-algebras are many-valued analogues of prob-
abilities on Boolean algebras. The disjointness of functions in
Lk is captured by the relation f ⊙ g = 0, for f, g ∈ Lk. This
condition is equivalent to f ⊕ g = f + g.

Definition 1. A state s on Lk is a mapping s : Lk → [0, 1]
such that s(1) = 1 and s(f ⊕ g) = s(f) + s(g), for every
f, g ∈ Lk with f ⊙ g = 0.

Theorem 2 ([4], [5]). If s is a state on Lk, then there exists
a uniquely determined Borel probability measure µ on [0, 1]k

such that s(f) =
∫
f dµ, for each f ∈ Lk.

Note that the Borel probability measure µ from Theorem 2
is necessarily regular since [0, 1]k is a compact metric space.

A main aim of this paper is to give an alternative geomet-
rical proof of Theorem 2. For any integer n ≥ 0 we use the
notation

∆n =
{
a ∈ Rn+1 |

n+1∑
i=1

ai = 1, ai ≥ 0, i = 1, . . . , n+ 1
}
.

Proposition 2. Let ĤΣ be a normalized basis and

a : ĤΣ → [0, 1]

be a function such that (a(ĥx))x∈VΣ ∈ ∆|ĤΣ|−1. Then there
exists a (finitely-supported) Borel probability measure δ on
[0, 1]k with a(ĥx) =

∫
ĥx dδ, for each x ∈ VΣ.
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Proof: Let δx denotes the Dirac measure concentrated at
a point x ∈ [0, 1]k. Put

δ =
∑

x∈VΣ

a(ĥx)δx.

For each vertex x ∈ VΣ, we get∫
ĥx dδ =

∑
x′∈VΣ

∫
a(ĥx′)ĥx dδx′ =

∑
x′∈VΣ

a(ĥx′)ĥx(x′)

= a(ĥx)ĥx(x) = a(ĥx).

Given a Borel probability measure µ on [0, 1]k, let sµ(f) =∫
f dµ, f ∈ Lk.

Proposition 3. If µ, ν are Borel probability measures on
[0, 1]k with µ ̸= ν, then the states sµ, sν on Lk satisfy
sµ ̸= sν .

Proof: Evidently, both functions sµ, sν are states on Lk.
By way of contradiction, suppose sµ = sν . The Borel subsets
of [0, 1]k are generated by the collection of all open (in
the subspace Euclidean topology of [0, 1]k) hyperrectangles
with rational vertices: indeed, every open subset of [0, 1]k

can be written as a countable union of such rectangles. As
a consequence, [15, Theorem 3.3] yields the existence of
an open rectangle R ⊆ [0, 1]k with rational vertices and
µ(R) ̸= ν(R).

Let R be the polyhedral complex consisting of all the faces
of the closure R of R. Taking an arbitrary point r ∈ R
with rational coordinates, consider the stellar subdivision R′

of R (see [12, p.15]). The polyhedral complex R′ can be
triangulated without introducing any new vertices [12, Propo-
sition 2.9]. In turn, the resulting simplicial complex can be
subdivided into a unimodular triangulation Σ of R with a
possible introduction of new vertices (see [6, Claim 2], for
example).

For each v ∈ VΣ ∩R, let hv be the Schauder hat at v over
Σ, and define a function fv : [0, 1]k → [0, 1] by

fv(x) =

{
hv(x), x ∈ R,
0, otherwise.

If f =
⊕

v∈VΣ ∩R fv , then it follows directly from unimodu-
larity of Σ and the definition of fv that f ∈ Lk. In particular,
note that f(x) vanishes iff x ∈ [0, 1]k \R and thus

sup
m∈N

m⊕
i=1

f = χR, (1)

where χR is the characteristic function of R. For every m ∈ N,
the function

⊕m
i=1 f is a k-variable McNaughton function,

and (1) together with the Lebesgue’s dominated convergence
theorem leads to the equality

µ(R) = sup
m∈N

∫ m⊕
i=1

f dµ = sup
m∈N

sµ

( m⊕
i=1

f

)
= sup

m∈N
sν

( m⊕
i=1

f

)
= sup

m∈N

∫ m⊕
i=1

fdν = ν(R),

which is a contradiction.
By M1 we denote the convex set of all Borel probability

measures on [0, 1]k, which is a compact metric space in
the subspace w∗-topology of C∗([0, 1]k (see [16]). For every
sequence (µn) in M1,

µn −→ µ iff ∫ fdµn −→ ∫ fdµ,

for every continuous function f : [0, 1]k → R.

Proof of Theorem 2: Let ĤΣ be a normalized basis. Put

MΣ = {µ | s(ĥx) = ∫ ĥxdµ, for each x ∈ VΣ}

and note that MΣ ̸= ∅ by Proposition 2. It follows directly
from the definition of topology on M1 that MΣ is closed. We
are going to show that

∩
Σ∈TMΣ ̸= ∅. The compactness of

M1 means that it suffices to prove
∩

Σ′∈T′ MΣ′ ̸= ∅ for every
finite subset T′ ⊆ T. Due to Theorem 1, there exists a basis HΣ

with HΣ′ ≼ HΣ, for every Σ′ ∈ T′. This means that for each
normalized hat ĥx ∈ ĤΣ′ , where Σ′ ∈ T′ and x ∈ VΣ′ , there
exist (uniquely determined) nonnegative integers (βy)y∈VΣ

such that ĥx =
∑

y∈VΣ
βyhy. Let δ =

∑
y∈VΣ

s(ĥy)δy .
Linearity of Lebesgue integral gives∫

ĥxdδ =
∑

y′∈VΣ

s(ĥy′)
∫ ∑

y∈VΣ

βy

den(y)
ĥy dδy′ . (2)

Due to additivity of states and since for every y ∈ VΣ,

s(ĥy)
den(y)

=
s(den(y)hy)

den(y)
= s(hy),

the right-hand side of (2) can be expressed as∑
y′∈VΣ

s(ĥy′)
∑

y∈VΣ

βy

den(y)
ĥy(y′)

∑
y′∈VΣ

s(ĥy′)
βy′

den(y′)
=

∑
y′∈VΣ

s
( βy′

den(y′)
ĥy′

)
s

( ∑
y∈VΣ

βyhy

)
= s(ĥx).

Thus δ ∈MΣ′ for each Σ′ ∈ T′, which leads to the conclusion∩
Σ∈TMΣ ̸= ∅. Every probability measure µ ∈

∩
Σ∈TMΣ

represents the state s. Indeed, given a McNaughton function
f ∈ Lk, find Σ∗ ∈ T and the basis HΣ∗ such that f =∑

x∈VΣ∗ axhx, for uniquely determined nonnegative integers
ax [8, Theorem 9.1.5]. It results that

s(f) = s

( ∑
x∈VΣ∗

axhx

)
=

∑
x∈VΣ∗

axs(hx)

=
∑

x∈VΣ∗

ax

∫
hx dµ =

∫ ∑
x∈VΣ∗

axhx dµ =
∫
f dµ.

The set
∩

Σ∈TMΣ is a singleton by Proposition 3.
The integral representation enables us to easily derive

a characterization of the state space S(Lk) of Lk. A Bauer
simplex [17] in a locally convex space is its nonempty compact
convex subset K, which is affinely isomorphic to a base
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for a lattice cone in some linear space, and whose extreme
boundary is closed. Bauer simplices are the compact convex
sets in an infinite-dimensional space that are closest to finite-
dimensional simplices.

Corollary 1. The set of all states S(Lk) on Lk is a metrizable
Bauer simplex.

Proof: It suffices to establish the existence of an affine
homeomorphism M1 → S(Lk), since M1 is known to be
a metrizable Bauer simplex. Consider the mapping µ 7→ sµ.
This mapping is continuous, it is one-to-one by Proposition
3 together with Theorem 2, and it is affine by linearity of
Lebesgue integral. Thus µ 7→ sµ is the affine homeomorphism.

Let s|ĤΣ
be the restriction of s ∈ S(Lk) to ĤΣ, and

S(ĤΣ) =
{
s|ĤΣ

| s ∈ S(Lk

}
, for any Σ ∈ T. Given

Σ,Σ′ ∈ T with HΣ ≼ HΣ′ , define pΣΣ′ : S(ĤΣ′) → S(ĤΣ)
by

pΣΣ′
(
s|ĤΣ′

)
= s|ĤΣ

, s|ĤΣ′
∈ S(ĤΣ′).

Proposition 4. The family
(
S(ĤΣ), pΣΣ′

)
Σ,Σ′∈T is an inverse

system of finite-dimensional simplices and

lim←−
(
S(ĤΣ), pΣΣ′

)
Σ,Σ′∈T = S(Lk).

Proof: For every Σ ∈ T, the set S(ĤΣ) is a finite-
dimensional simplex since it is affinely homeomorphic to
∆|ĤΣ|−1. Indeed, consider a mapping

a : s|ĤΣ
7→ (s(ĥx))x∈VΣ .

It can be easily checked that a is into ∆|ĤΣ|−1, affine,
continuous, injective, and surjective by Proposition 2.

The family
(
S(ĤΣ), pΣΣ′

)
Σ,Σ′∈T is an inverse system in

the category of compact convex sets. Precisely, T is up-
directed by the reversed inclusion (Σ ⊇ Σ′ iff HΣ ≼ HΣ′),
the mapping pΣΣ′ is a continuous affine surjection for every
Σ,Σ′ ∈ T with HΣ ≼ HΣ′ , it is identity for Σ = Σ′, and
pΣΣ′ ◦ pΣ′Σ′′ = pΣΣ′′ , whenever HΣ ≼ HΣ′ ≼ HΣ′′ .

It remains to show that S(Lk) is affinely homeomorphic to
the inverse limit lim←−

(
S(ĤΣ), pΣΣ′

)
Σ,Σ′∈T that is equal to{(

s|ĤΣ

)
Σ∈T∈

∏
Σ∈T

S(ĤΣ) | pΣΣ′(s|ĤΣ′
) = s|ĤΣ

,HΣ ≼ HΣ′

}
.

The routine verification yields that the mapping

s ∈ S(Lk) 7→
(
s|ĤΣ

)
Σ∈T

is the sought affine homeomorphism.
The author is indebted to one of the reviewers for the MV-

algebraic interpretation of the limit construction appearing in
Proposition 4. Namely, consider a finite quotient FΣ of Lk

given by FΣ = {f |VΣ | f ∈ Lk}, where Σ ∈ T (see [8,
Chapter 3] for details on ideals in free MV-algebras). The state
space of each FΣ is precisely the finite-dimensional simplex
∆|ĤΣ|−1. Since Lk is in fact an inverse limit of all the FΣ’s,
Proposition 4 then shows that the state space S(Lk) is the
inverse limit of the state spaces of the finite quotients FΣ.
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